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In connection with Temple's  formula variance minimization yields accurate 
values especially for groundstate energies of Schr6dinger operators with a 
discrete spectrum. 

The result in a.u. for the groundstate E0 of the He-a tom in the infinite nuclear 
mass approximation is 

-2 .90372438655 -< E o -  -2 .90372437696 

i.e. Eo is determined with an absolute error smaller than 0.0022 cm -1. 

Key words: Eigenvalue problems. 

1. Introduction 

The determination of eigenvalues of the nonrelativistic Schr6dinger operator  with 
spectroscopic accuracy, that is within an error of approximately 0.005 cm -1 is 
even for the groundstate of the He-a tom a hard problem as shown by Kinoshita 
[1], Pekeris [2], Gay [3] and others. 

The main method used to get upper bounds is the Rayleigh-Ritz principle. 
Among others the method of Bazley and Fox [4] and its generalization by Hill [5] 
are available for lower bounds. An effective accurate lower bound of the ground- 
state Eo is obtained by Temple's  formula [6], which could be used too for the 
excited states Ei with suitable P- In the following the discussion is limited to the 
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evaluation of the groundstate E0, the necessary extension needed for the cal- 
culation of Ei could be done analogously. 

For a selfadjoint operator  H, bounded below, with a discrete spectrum o'd = 
{EilEo<E1 < . . . }  below the bottom of the continuum Temple's  formula yields 

[IHu[[ 2 -  (Hu, u) 2 
Eo >- (Hu, u) , u ~ D . ,  Ilull = 1 

o - (Hu, u) 

with DH as the domain of H and E0 < P < El .  As can be seen from Temple's  
formula the knowledge of a "good"  value for p, i.e. a sharp lower bound for E1 is 
not very effective for a better value of a lower bound of Eo. Much more essential 
for a good lower bound is a small value of the variance 

fEu ] = IlHull 2 -  (Hu, u )t  

This idea leads to the method of variance minimization [7]. 

2. The Method of Variance Minimization 

Let H be a selfadjoint operator  in the Hilbert-space L 2, where It" 1[ and (.  , .  ) 
denote the usual Le-norm and inner product, respectively. Furthermore let DH 
be the domain of H, o-(H) the spectrum and P (H) the resolvent set of H. From the 
spectral theorem of selfadjoint operators for each v c L a and u ~ DA with A = 
f(H) and continuous f follows 

t '  co 

(v,f(H)u) = I f(a) d(v, E~u) (1) 
d ~  co  

with {EA} as a spectral family of H. Let  h* be an arbitrary real number and r the 
distance between h* and or(H), i.e. 

r =  inf I h - / * ]  
h ~ o ' ( H )  

It follows for every u e DH from (1) 
co co 

r2I[ul[ 2= f_ r 2 d]lEau[[ 2 <- [_ ]h - h*lz dl[Eaul[2 
CO o0 

= L I ( H - a * ) u [ I  2 

taking into account E~u being a constant function on p(H) with respect to ,~ and 
r 2 ~ ]h - h*]z for all h e o-(H). The obtained inequality 

inf [A -A*[-<II(H-A*)ul[, UeDH, Ilull= 1 
h e o - ( H )  

leads for a n-dimensional subspace V~ c DH to the principle of variance mini- 
mization as stated in [7]: 

Minimization of the non-negative functional 

Flu] = [[Hull 2 - (Hu, u) 2, Hu H = 1 
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i.e. the determination of 

Fo* = inf F[u]=F[u*o] 
u c  V .  

gives an u* e V. and further a A* = (Hu*, u*) with 

inf IA -A~I2GF~. 
x ao-(H) 

Because ~r(H) is a closed set on the real line considered as a metric space, there is 
at least one point Ao ~ o-(H) for which the infimum is achieved. Therefore  

[Ao-A*I2_<Fo * 

and A* is an approximate  value for Ao with the error x/~*o*. 

For a selfadjoint opera tor  H, bounded below, with a discrete spectrum O'd = 
{Ei[Eo < E1 <"  " "} below the bo t tom of the continuum the lower bound A * - x/~*o* 
for the lowest eigenvalue Ao = Eo can be essentially sharpened by Temple ' s  
formula, because in this formula Fo* is used instead of X/~o*. With 

A*=(Hu*,u*) and F*o =Flu *] 

one obtains a lower bound E*  for Eo with 

Eo -> Eo* = A o ~ Fo* 
o-A* (2) 

if a suitable value for p is available. But the method of variance minimization gives 
automatically a good value for p with p = A 1 - ~/~*~*, if it is ensured that A 1 - ~/F---~ 
is a lower bound for El .  

As is shown in [7] for an upper  bound we have 

Eo_<A~ _<Ao ~ 

where A ~ is the Ritz value, i.e. 

Af)= inf (Hu, u)=(Hu~o, Uf)), Ilull=l 
u~  V~ 

Because Ao* ->A~, but F[u'~]<-F[u~o] =Fro [8] the lower bound Eo ~ is sharpened 
by both terms against the lower bound E~ with 

F; r Eo>-Ero =Ao - ~  (3) 
p - A o  

obtained f rom Temple ' s  formula with the Ritz values A ~ and F~, apart  f rom the 
fact that a lower bound for E~, i.e. a value for p has to be estimated in another  way. 

3. The Comparison of Eo* and Eg for the He-Groundstate with Infinite 
Nuclear Mass 

For the He-a tom values of A* and F*  for the groundstate E0 and the first 
excited singlet state E1 were calculated with the linearized method of variance 
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minimization [9]. To compare the lower bounds which could be obtained from 
formula (2) and (3) the corresponding Ritz values h ;  and F ;  were calculated 
additionally. The Schr6dinger operator  used for the S-states of the He-a tom was 

H = T + V  

f 0 2 1 0 2 1 O 2 

o7+  oz 
1 x 2 - . } - y 2 - z  2 032 1 x 2 - k - z 2 - y  2 02 

+ 
2 xy  OxOy 2 xz  OxOz 

} + -  - - + -  - - + -  (4) 
x 3x y Oy z 

1 2 2 
V =  

x y z 

and the test functions were linear combinations of basic functions 

t[.tprs=XPyrz s e -~(y+z), ot = O~prs>0 (5) 

with the notation as in [10]. 

The results of the calculations of the A-values with the corresponding errors F as a 
function of the dimension of the vectorspace V,  spanned by the ~prs with 
aprs = 1.8 for all indices are shown in Table 1. 

Table 2 allows the comparison of the lower bounds Eo* and E~ of the groundstate 
E0 where the same p with p = A * - ~/~*i* was used in both formulas (2) and (3). The 
difference A = E o * - E ~  given in cm -1 is relatively large even in the case of an 
extended basis. 

The calculations were performed on a CDC Cyber 76 in double precision, i.e. with 
26 digits. The dimension of the vector space was limited to 444 basic functions in 
first order, because the matrix diagonalization by Householder 's  method for still 
larger matrices failed. Two reasons were responsible for the instability: first the 
overcompleteness of the basis ///prs which yields an overlap matrix containing 
extremely small eigenvalues, and second the fact that the small value Fo* is 

Table 1. The A- and F-values for Eo and E1 of the He-atom in a.u. 

dim V. a~ F~ �9 10 3 h~ Fo* �9 10 3 h~ F~* �9 10 3 

7 -2.9034231727 12.58548 -2.9030301280 7.34200 -1.6617494 478.11400 
34 -2.9037162176 0.73267 -2.9037007744 0.36775 -2.1039081 10.11826 
95 -2.9037237313 0.11141 -2.9037219267 0.05198 -2.1409714 0.75060 

161 -2.9037242037 0.04188 -2.9037236190 0.01896 -2.1449452 0.14799 
203 -2.9037242801 0.02716 -2.903723926o 0.01215 -2.1455413 0.06415 
252 -2.9037243206 0.01816 -2.9037240931 0.00804 -2.1457960 0.02766 
444 -2.903724363s 0.00627 -2.9037242962 0.00271 -2.1459644 0.00196 
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Table 2. The comparison of the lower bounds E~ and Eo* in a.u., A = Eo* -E~ in 
cm -1 
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d im Vn 0 = A * - ~/F-~I* E• Eo* A 

7 -2.35320 -2.926296582 -2.916383343 2175.00 
34 -2.20449 -2.904764047 -2.904226724 117.92 
95 -2.16836 -2.903875234 -2.903792612 18.13 

161 -2.15711 -2.903780296 -2.903749015 6,86 
203 -2.15355 -2.903760485 -2.903740122 4.47 
252 -2.15105 -2.903748447 -2.903734775 3.00 
444 -2.14736 -2.903732653 -2.903727879 1.05 

determined as the lowest eigenvalue of a positive definite matrix, which becomes 
singular as a consequence of rounding errors. 

4. Accurate Lower and Upper Bounds for the Groundstate Eo of the 
He-Atom with Infinite Nuclear Mass 

To get a more accurate value of E0 than obtained up to now, a better basis must be 
used or, respectively, a stable method has to be found to solve the generalized 
eigenvalue problem 

Ax  = ABx (6) 

with large matrices A and B. No general rules are known which guarantee the 
construction of a "good small" basis a priori. Various choices of the nonlinear 
parameters 0~prs in (5) did not yield any decisive improvement.  A somewhat better  
result was obtained with symmetry adapted coordinates 

u = y + z ,  v = y - z  

and a corresponding basis analog to (5), but also in this case larger basic sets could 
not be avoided. 

Therefore,  three iterative methods for solving the generalized eigenvalue prob- 
lem (6) with large matrices were tested: The methods of Nesbeth [11] and Falk 
[12] were inefficient for computer  technical reasons, because of the slow con- 
vergence already for relatively small matrices and memory problems for big 
matrices the rows of which have to be stored and processed sequentially. In 
contrast the Wieland iteration [13] proved to be very fast and computer suitable 
for the determination of the absolutely lowest eigenvalue which for positively 
defined A is also the lowest. 

The application of the Wieland iteration was performed in such a way that starting 
from a suitable value for x, this value was replaced by A-1Bx  until the Rayleigh 
quotient xTAx/xTBx barely changed. The operation A -1 was produced by the 
multiplication of two matrices which arise from a Lower-Upper-decomposi t ion of 
A by Gau]3 algorithm. It was possible to master the decomposition and all 
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Table 3. Upper and lower bounds of Eo in a.u. 
in cm -1 
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- A o  - Eo by Wieland iteration, 8 - * * 

dim V, AT Fo* " 10 8 Eo* 8" 10 3 

444 -2.9037243672023 7.11831 -2.90372446132 20.6 
525 -2.9037243749605 4.15537 -2.90372442990 12.1 
615 -2.9037243761663 2.84863 -2.90372441383 8.3 
715 -2.9037243767465 2.06778 -2.90372440409 6.0 
825 -2.9037243768113 1.56066 -2.90372439745 4.5 
946 -2.9037243769036 1.11917 -2.90372439171 3.3 

1078 -2.9037243769279 0.95602 -2.90372438957 2.8 
1222 -2.9037243769585 0.72500 -2.90372438655 2.2 

multiplications by processing the upper triangle column by column, which yields a 
very effective method for the calculation of the absolutely lowest eigenvalue. 

With a little trick every isolated eigenvalue Ai could be made the absolutely 
smallest eigenvalue by considering the modified problem 

(A - A *B) =/z,Bx (7) 

with an approximated A*, which is closer to this eigenvalue than any other. The 
solution of (7) leads to a 

which for this problem is indeed the absolutely smallest eigenvalue with the same 
eigenvector as for the former Ai. The identity of A~ and A* is shown by the failure of 
the Lower-Upper-decomposit ion.  With the knowledge of Ai the eigenvector 
could be estimated now, if necessary by using a A* slightly different from A~. 

Table 3 gives the result of the Wieland iteration as a function of the dimension of 
the basis. The value of p, e.g. p = - 2 . 1 4 7 3 6  was taken from the formerly 
performed calculations with 444 basic functions. As mentioned above new 
coordinates and a new basis with a = 3.5 were used, i.e. 

p r s - - ~ u  
= ~ ,  C p r s X  U U e 

with 

u = y + z ,  v = y - z  

and the Schr6dinger operator (4) was transformed into the new coordinates. 

The precision of this calculation is almost better than the values of the fundamen- 
tal constants, e and h, are known; latter are necessary to calculate via the Bohr 
radius a0 = 219474.62 cm -1 [14] the energy values in cm -1 in order to compare 
with the experimental result. 
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